EE 330 Lecture 27

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)

Two-Port Amplifier Modeling

Spring 2024 Exam Schedule

Exam $1 \quad$ Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Review from last lecture

Small Signal Model of MOSFET

Large Signal Model

$$
I_{G}=0
$$

$$
I_{o}=\left\{\begin{array}{l}
0 \\
\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}-\frac{V_{o s}}{2}\right) V_{o s} \\
\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{o s}\right)
\end{array}\right.
$$

MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

Small Signal Model of MOSFET

Saturation Region Summary
Nonlinear model:

$$
\left\{\begin{array}{l}
I_{G}=0 \\
I_{o}=\mu C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{o s}\right)
\end{array}\right.
$$

Small-signal model:

$$
\left\{\begin{array}{l}
\boldsymbol{i}_{G}=y_{11} \boldsymbol{v}_{G S}+y_{12} \boldsymbol{v}_{D S}=0 \\
\boldsymbol{i}_{D}=y_{21} \boldsymbol{v}_{G S}+y_{22} \boldsymbol{v}_{D S E}
\end{array}\right.
$$

$$
\begin{array}{cl}
\mathrm{y}_{11}=0 & \mathrm{y}_{12}=0 \\
\mathrm{y}_{21}=g_{m} \cong \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{oso}}-\mathrm{V}_{\mathrm{T}}\right) & \mathrm{y}_{22}=g_{0} \cong \lambda l_{\mathrm{DQ}}
\end{array}
$$

Review from last lecture

Small-Signal Model of MOSFET

Alternate equivalent expressions for g_{m} :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{oo}}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{osa}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{osa}}\right) \cong \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{oso}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \\
& g_{m}=\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\text {oso }}-\mathrm{V}_{\mathrm{T}}\right) \\
& g_{m}=\sqrt{2 \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}} \cdot \sqrt{\mathrm{l}_{\mathrm{oo}}} \\
& g_{m}=\frac{2 I_{o p}}{V_{\text {oso }}-V_{T}}
\end{aligned}
$$

Review from last lecture

Small Signal Model of BJT

$$
\begin{aligned}
& \boldsymbol{i}_{B}=g_{\pi} \boldsymbol{V}_{B E} \\
& \boldsymbol{i}_{c}=g_{\boldsymbol{m}} \boldsymbol{v}_{B E}+g_{o} \boldsymbol{v}_{c t}
\end{aligned}
$$

$$
g_{\pi}=\frac{\mathrm{I}_{\infty}}{\beta V_{t}} \quad g_{m}=\frac{\mathrm{I}_{\infty}}{\mathrm{V}_{t}} \quad g_{o}=\frac{\mathrm{I}_{\mathrm{co}}}{\mathrm{~V}_{\Delta F}}
$$

y-parameter model using " g " parameter notation

Small Signal BJT Model - alternate

Alternate equivalent small signal model

$$
\mathrm{g}_{\pi}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\beta \mathrm{~V}_{\mathrm{t}}} \quad \mathrm{~g}_{o} \cong \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}}
$$

Consider again: Review from last lecture

Small-signal analysis example

$$
\left[\overline{\mathrm{V}_{\mathrm{ss}}+\mathrm{V}_{\mathrm{T}}}\right]
$$

Derived for $\lambda=0 \quad$ (equivalently $g_{0}=0$)

$$
\mathrm{I}_{0}=\mu \mathrm{C}_{\text {ox }} \frac{\mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\text {os }}-\mathrm{V}_{T}\right)^{2}
$$

Recall the derivation was very tedious and time consuming!

ss circuit

Consider again: Review from last lecture

 Small signal analysis example

$$
A_{V B}=-\frac{I_{C Q} R}{V_{t}}
$$

Derived for $\mathrm{V}_{\mathrm{AF}}=0$ (equivalently $\mathrm{g}_{\mathrm{o}}=0$)

Recall the derivation was very tedious and time consuming!

ss circuit

Review from last lecture

Small-Signal Model Representations

The good, the bad, and the unnecessary !!

- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another

Graphical Analysis and Interpretation

Consider Again

$$
\left.\begin{array}{l}
V_{\text {OUT }}=V_{D D}-I_{D} R \\
I_{D}=\frac{\mu C_{o x} W}{2 L}\left(V_{W N}-V_{S S}-V_{T}\right)^{2}
\end{array}\right\} \quad I_{D Q}=\frac{\mu C_{O X} W}{2 L}\left(V_{S S}+V_{T}\right)^{2}
$$

Graphical Analysis and Interpretation

 Device Model (family of curves) $\quad I_{0}=\frac{\mu \mathrm{C}_{0} \mathrm{~W}}{2 L}\left(V_{s s}-V_{+}\right)^{2}\left(1+\lambda V_{\text {ss }}\right)$

Load Line

$$
\begin{aligned}
& V_{O U T}=V_{D D}-I_{D} R \\
& I_{D}=\frac{\mu C_{O X} W}{2 L}\left(V_{W N}-V_{S S}-V_{T}\right)^{2} \\
& I_{D Q}=\frac{\mu C_{O X} W}{2 L}\left(V_{S S}+V_{T}\right)^{2}
\end{aligned}
$$

Device Model

Device Model at Operating Point

Graphical Analysis and Interpretation

 Device Model (family of curves) $\quad I_{0}=\frac{\mu \mathrm{C}_{0} \mathrm{~W}}{2 L}\left(V_{s s}-V_{+}\right)^{2}\left(1+\lambda V_{\text {ss }}\right)$

$$
\begin{array}{ll}
\mathrm{s} 2 & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{I}_{\mathrm{D}} \mathrm{R} \\
\mathrm{si} & \\
\mathrm{~V}_{\mathrm{DS}} & \mathrm{~V}_{\mathrm{SS}}+\mathrm{V}_{D S}=\mathrm{V}_{D D}-\mathrm{I}_{\mathrm{D}} \mathrm{R}
\end{array}
$$

Load Line

$$
\begin{aligned}
& V_{\text {OUT }}=V_{D D}-I_{D} R \\
& I_{0}=\frac{\mu C_{O x} W}{2 L}\left(V_{W}-V_{S S}-V_{T}\right)^{2}
\end{aligned}
$$

Device Model

Device Model at Operating Point

$$
I_{\mathrm{DQ}}=\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{SS}}+\mathrm{V}_{\mathrm{T}}\right)^{2}
$$

Graphical Analysis and Interpretation

Device Model (family of curves) $\mathrm{I}_{\mathrm{o}}=\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{as}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{os}}\right)$ $4 I_{D} I_{0}=\frac{V_{\text {oD }}-V_{\text {ss }}}{R}$ $V_{G S E}$ V_{Gs}

$V_{G S Q}=-V_{S S}$

$$
\begin{gathered}
\text { Q-Point } \\
\mathrm{V}_{S S}+\mathrm{V}_{D S}=\mathrm{V}_{D D}-\mathrm{I}_{\mathrm{D}} \mathrm{R} \\
\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathbb{N}}-\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} ?
\end{gathered}
$$

Load Line

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{oo}} \cong \frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{ss}}+\mathrm{V}_{\mathrm{T}}\right)^{2} \\
& \mathrm{~V}_{\mathrm{oso}}=-\mathrm{V}_{\mathrm{ss}}
\end{aligned}
$$

$V_{D S}=V_{D 0}-V_{s s}$

Must satisfy both equations all of the time !

Graphical Analysis and Interpretation

 Device Model (family of curves) $\quad I_{0}=\frac{\mu \mathrm{C}_{a} \mathrm{~W}}{2 L}\left(V_{\text {ss }}-V_{+}\right)^{2}\left(1+\lambda V_{\text {ss }}\right)$

 $V_{\text {GS }}$

Q-Point
$V_{\text {OUT }}=V_{D D}-I_{D} R$
$\mathrm{I}_{\mathrm{o}}=\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{Ss}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \quad ?$

Graphical Analysis and Interpretation

Device Model (family of curves) $I_{o}=\frac{\mu C_{0 \times} W}{2 L}\left(V_{N D}-V_{s s}-V_{T}\right)^{2}\left(1+\lambda V_{o s}\right)$

- As $\mathrm{V}_{\mathbb{I N}}$ changes around Q -point, $\mathrm{V}_{\mathbb{I N}}$ induces changes in V_{GS}. The operating point must remain on the load line!
- Small sinusoidal changes of V_{IN} will be nearly symmetric around the $V_{G S Q}$ line
- This will cause nearly symmetric changes in both I_{D} and $V_{D S}$!
- Since $\mathrm{V}_{S S}$ is constant, change in V_{DS} is equal to change in $\mathrm{V}_{\text {OUT }}$

Graphical Analysis and Interpretation

 Device Model (family of curves) $I_{o}=\frac{\mu C_{0 \times} W}{2 L}\left(V_{N D}-V_{s s}-V_{T}\right)^{2}\left(1+\lambda V_{o s}\right)$

$$
V_{G S 6}
$$

Graphical Analysis and Interpretation

 Device Model (family of curves) $\mathrm{I}_{\mathrm{oo}}=\frac{\mu \mathrm{C}_{\mathrm{o}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{os}}\right)$

- Linear signal swing region smaller than saturation region
- Modest nonlinear distortion provided saturation region operation maintained
- Symmetric swing about Q-point
- Signal swing can be maximized by judicious location of Q-point

Graphical Analysis and Interpretation

 Device Model (family of curves) $\mathrm{I}_{\mathrm{oo}}=\frac{\mu \mathrm{C}_{\mathrm{o}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{os}}\right)$

Saturation region

$$
\mathrm{I}_{\mathrm{oo}} \cong \frac{\mu \mathrm{C}_{\mathrm{o}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{ss}}+\mathrm{V}_{\mathrm{T}}\right)^{2}
$$

Very limited signal swing with non-optimal Q-point location

Graphical Analysis and Interpretation

 Device Model (family of curves) $\mathrm{I}_{\mathrm{oo}}=\frac{\mu \mathrm{C}_{\mathrm{o}} \mathrm{W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{os}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{os}}\right)$

$$
\mathrm{V}_{\mathrm{GSQ}}=-\mathrm{V}_{\mathrm{SS}}
$$

Saturation region

$$
\mathrm{I}_{\mathrm{oo}} \cong \frac{\mu \mathrm{C}_{\mathrm{o}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{ss}}+\mathrm{V}_{\mathrm{T}}\right)^{2}
$$

- Signal swing can be maximized by judicious location of Q-point
- Often selected to be at middle of load line in saturation region

Small-Signal MOSFET Model Extension

Existing 3-terminal small-signal model does not depend upon the bulk voltage!

Recall that changing the bulk voltage changes the electric field in the channel region and thus the threshold voltage!

Recall: Typical Effects of Bulk on Threshold Voltage for n-channel Device

$$
\begin{gathered}
V_{T}=V_{T 0}+\gamma\left[\sqrt{\phi-V_{B S}}-\sqrt{\phi}\right] \\
\gamma \cong 0.4 \mathrm{~V}^{-\frac{1}{2}} \quad \phi \cong 0.6 \mathrm{~V}
\end{gathered}
$$

Bulk-Diffusion Generally Reverse Biased ($\mathrm{V}_{\mathrm{BS}}<0$ or at least less than 0.3 V) for n channel
Shift in threshold voltage with bulk voltage can be substantial Often $\mathrm{V}_{\mathrm{BS}}=0$

Recall: Typical Effects of Bulk on Threshold Voltage for p-channel Device

$$
\begin{aligned}
& V_{T}=V_{T 0}-\gamma\left[\sqrt{\phi+V_{B S}}-\sqrt{\phi}\right] \\
& \gamma \cong 0.4 \mathrm{~V}^{-\frac{1}{2}} \quad \phi \cong 0.6 \mathrm{~V}
\end{aligned}
$$

Bulk-Diffusion Generally Reverse Biased ($\mathrm{V}_{\mathrm{BS}}>0$ or at least greater than -0.3 V) for n-channel

Same functional form as for n-channel devices but $\mathrm{V}_{\text {T0 }}$ is now negative and the magnitude of V_{T} still increases with the magnitude of the reverse bias

Recall:

4-terminal model extension

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{G}}=0 \\
& I_{B}=0 \\
& \begin{cases}0 & V_{\text {Gs }} \leq V_{T}\end{cases} \\
& \mathrm{I}_{\mathrm{o}}=\left\{\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\frac{\mathrm{V}_{\mathrm{OS}}}{2}\right) \mathrm{V}_{\mathrm{DS}} \quad \mathrm{~V}_{\mathrm{GS}} \geq \mathrm{V}_{T} \mathrm{~V}_{\mathrm{OS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right. \\
& \mu C_{o x} \frac{W}{2 L}\left(V_{\text {GS }}-V_{T}\right)^{2} \cdot\left(1+\lambda V_{\text {os }}\right) \quad V_{G S} \geq V_{T} V_{\text {os }} \geq V_{\text {GS }}-V_{T} \\
& \mathrm{~V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{TO}}+\gamma\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
& \text { Model Parameters : }\left\{\mu, \mathrm{C}_{\mathrm{OX}}, \mathrm{~V}_{\mathrm{T} 0}, \varphi, \gamma, \lambda\right\}
\end{aligned}
$$

Design Parameters : $\{\mathrm{W}, \mathrm{L}\}$ but only one degree of freedom W/L biasing or quiescent point

Small-Signal 4-terminal Model Extension

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=0 \\
& \mathrm{I}_{\mathrm{B}}=0 \\
& \left\{\begin{array}{l}
0 \quad V_{G S} \leq V_{T}, ~
\end{array}\right. \\
& I_{D}=\left\{C_{0 \times} \frac{W}{L}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S} \quad V_{G S} \geq V_{T} V_{D S}<V_{G S}-V_{T}\right. \\
& \mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \bullet\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right) \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T} 0}+\gamma\left(\sqrt{\phi-\mathrm{V}_{\mathrm{BS}}}-\sqrt{\phi}\right) \\
& \mathbf{y}_{11}=\left.\frac{\partial \mathbf{I}_{\mathbf{G}}}{\partial \mathbf{V}_{\mathbf{G S}}}\right|_{V=v_{0}}=0 \quad \mathbf{y}_{12}=\frac{\partial \mathbf{I}_{\mathbf{G}}}{\left.\partial \mathbf{v}_{\mathrm{DS}}\right|_{V=V_{0}}}=0 \quad \mathbf{y}_{13}=\left.\frac{\partial \mathbf{I}_{\mathbf{G}}}{\partial \mathbf{v}_{\mathrm{GS}}}\right|_{V=v_{0}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y}_{31}=\left.\frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathbf{G S}}}\right|_{\overline{\mathrm{V}}=\overline{\mathbf{v}}_{\mathrm{a}}}=0 \quad \mathbf{y}_{32}=\left.\quad \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{DS}}}\right|_{\overline{\mathrm{v}}=\overline{\mathbf{v}}_{\mathrm{a}}}=0 \quad \mathbf{y}_{33}=\left.\quad \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathbf{G S}}}\right|_{{\overline{\mathrm{v}}=\overline{\mathrm{v}}_{\mathrm{a}}}=0}
\end{aligned}
$$

Small-Signal 4-terminal Model Extension

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{O}}=\mu \mathrm{C}_{\mathrm{OX}} \frac{\mathrm{~W}}{2(}\left(\mathrm{V}_{G S}-V_{T}\right)^{2} \cdot\left(1+\lambda \mathrm{V}_{0 S}\right) \quad \text { Definition: } \\
& \begin{array}{ll}
V_{T}=V_{T O}+\gamma\left(\sqrt{\phi-V_{B S}}-\sqrt{\phi}\right) & V_{E B}=V_{G S}-V_{T} \\
V_{E B Q}=V_{G S Q}-V_{T Q}
\end{array} \\
& g_{m}=\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{V=V_{e}}=\left.\mu \mathrm{C}_{\text {ox }} \frac{\mathrm{W}}{2 \mathrm{~L}} 2\left(\mathrm{~V}_{\text {GS }}-\mathrm{V}_{\mathrm{T}}\right)^{1} \cdot\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right)\right|_{V=V_{Q}} ^{\cong} \xlongequal{\mu \mathrm{C}_{\text {ox }} \frac{\mathrm{W}}{\mathrm{~L}} \mathrm{~V}_{\text {EBa }}} \\
& g_{o}=\left.\frac{\partial I_{D}}{\partial V_{D S}}\right|_{V=V_{Q}}=\left.\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}} 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \cdot \lambda\right|_{V=V_{Q}} \cong \lambda \mathrm{I}_{\mathrm{DQ}} \\
& g_{m b}=\left.\frac{\partial I_{D}}{\partial V_{B S}}\right|_{V=V_{D}}=\left.\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{2 \mathrm{~L}} 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{1} \bullet\left(-\frac{\partial V_{T}}{\partial V_{B S}}\right) \bullet\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right)\right|_{\bar{V}=\bar{V}_{e}} \\
& g_{m b}=\left.\frac{\partial I_{D}}{\partial V_{B S}}\right|_{V=V_{e}} \cong \mu \mathrm{C}_{\mathrm{o}} \times\left.\frac{\mathrm{W}}{\mathrm{~L}} \mathrm{~V}_{\text {EBQ }} \bullet \frac{\partial V_{T}}{\partial V_{B S}}\right|_{V=V_{e}}=\left.\left(\mu \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\text {EBQ }}\right)(-\chi) \gamma \frac{1}{2}\left(\phi-V_{B S}\right)^{-\frac{1}{2}}\right|_{V=V_{e}}(-\chi) \\
& g_{m b} \cong g_{m} \frac{\gamma}{2 \sqrt{\phi-\mathrm{V}_{\text {BSa }}}}
\end{aligned}
$$

Small Signal MOSFET Equivalent Circuit

An equivalent Circuit:

$$
\begin{gathered}
g_{m}=\frac{\mu C_{O X} W}{L}\left(V_{G S Q}-V_{T}\right) \\
g_{o}=\lambda l_{D Q} \\
g_{m b}=g_{m}\left(\frac{\gamma}{2 \sqrt{\phi-V_{B S Q}}}\right)
\end{gathered}
$$

This contains absolutely no more information than the set of small-signal model equations

Small Signal 4-terminal MOSFET Model Summary

$$
\begin{aligned}
& i_{g}=0 \\
& g_{m}=\frac{\mu C_{o x} W}{L} V_{\text {Eв }} \\
& g_{o}=\lambda I_{D Q} \\
& i_{b}=0 \\
& i_{d}=g_{m} v_{g s}+g_{m b} v_{b s}+g_{o} v_{d s} \\
& g_{\mathrm{mb}}=g_{\mathrm{m}}\left(\frac{\gamma}{2 \sqrt{\phi-\mathrm{V}_{\mathrm{BSQ}}}}\right)
\end{aligned}
$$

Relative Magnitude of Small Signal MOS Parameters

Consider:

$$
\dot{\boldsymbol{l}}_{d}=\boldsymbol{\xi}_{m} \mathcal{V}_{g s}+\mathcal{B}_{m b} \mathcal{V}_{b s}+\boldsymbol{\xi}_{o} \mathcal{V}_{d s}
$$

3 alternate equivalent expressions for g_{m}

$$
g_{m}=\frac{\mu C_{O X} W}{L} V_{E B Q} \quad g_{m}=\sqrt{\frac{2 \mu C_{O X} W}{L}} \sqrt{I_{D Q}} \quad g_{m}=\frac{2 I_{D Q}}{V_{E B Q}}
$$

Consider, as an example:

$$
\begin{array}{cc}
\mu \mathrm{C}_{\mathrm{OX}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=.01 \mathrm{~V}^{-1}, \mathrm{~V}=0.4 \mathrm{~V}^{0.5}, \mathrm{~V}_{\mathrm{EBQ}}=1 \mathrm{~V}, \mathrm{~W} / \mathrm{L}=1, & \mathrm{~V}_{\mathrm{BSQ}}=0 \mathrm{~V} \\
\mathrm{I}_{\mathrm{OQ}} \cong \frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{2 \mathrm{~L}} \mathrm{~V}_{\text {EBQ }}^{2}=\frac{10^{-4} W}{2 \mathrm{~W}}(1 \mathrm{~V})^{2}=5 \mathrm{E}-5 & \text { In this example } \\
\mathrm{g}_{\mathrm{m}}=\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\text {EBQ }}=1 \mathrm{E}-4 & \mathrm{~g}_{0} \ll \mathrm{~g}_{\mathrm{m}}, \mathrm{~g}_{\mathrm{mb}} \\
& \mathrm{~g}_{\mathrm{mb}}<\mathrm{g}_{\mathrm{m}}
\end{array}
$$

$$
g_{o}=\lambda I_{D Q}=5 E-7
$$

$$
g_{\mathrm{mb}}=g_{\mathrm{m}}\left(\frac{\gamma}{2 \sqrt{\phi-\mathrm{V}_{\text {BSQ }}}}\right)=.26 \mathrm{~g}_{\mathrm{m}}
$$

This relationship is common
In many circuits, $v_{\mathrm{BS}}=0$ as well

- Often the g_{0} term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_{\circ} prior to obtaining a final expression

Relative Magnitude of Small Signal BJT Parameters

$$
\begin{aligned}
g_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{t}}} & g_{\pi}=\frac{\mathrm{l}_{\mathrm{CQ}}}{\beta \mathrm{~V}_{\mathrm{t}}} \quad g_{o} \cong \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}} \\
\frac{g_{\mathrm{m}}}{g_{\pi}} & =\frac{\left[\frac{\mathrm{I}_{\mathrm{Q}}}{\mathrm{~V}_{\mathrm{t}}}\right]}{\left[\frac{\mathrm{I}_{\mathrm{Q}}}{\beta \mathrm{~V}_{\mathrm{t}}}\right]} \\
\frac{g_{\pi}}{g_{o}} & =\left[\frac{\left[\frac{\mathrm{l}_{\mathrm{Q}}}{\beta \mathrm{~V}_{\mathrm{t}}}\right]}{\left[\frac{\mathrm{I}_{\mathrm{Q}}}{\mathrm{~V}_{\mathrm{AF}}}\right]}\right. \\
g_{\mathrm{m}} & \gg g_{\pi} \gg g_{\mathrm{o}}
\end{aligned}
$$

Often the g_{o} term can be neglected in the small signal model because it is so small

Relative Magnitude of Small Signal Parameters

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{m}}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{t}}} \quad \mathrm{~g}_{\pi}=\frac{\mathrm{I}_{\mathrm{CQ}}}{\beta \mathrm{~V}_{\mathrm{t}}} \quad \mathrm{~g}_{o} \cong \frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~V}_{\mathrm{AF}}} \\
& \frac{g_{m}}{g_{\pi}}=\frac{\left[\frac{I_{Q}}{V_{t}}\right]}{\left[\frac{I_{Q}}{\beta V_{t}}\right]}=\beta \\
& \frac{g_{\pi}}{g_{o}}=\frac{\left[\frac{I_{Q}}{\beta V_{t}}\right]}{\left[\frac{I_{Q}}{V_{A F}}\right]}=\frac{V_{A F}}{\beta V_{t}} \approx \frac{200 \mathrm{~V}}{100 \cdot 26 \mathrm{mV}}=77 \\
& g_{m} \gg g_{\pi} \gg g_{\circ}
\end{aligned}
$$

- Often the g_{o} term can be neglected in the small signal model because it is so small
- Be careful about neglecting g_{\circ} prior to obtaining a final expression

Small Signal Model Simplifications for the MOSFET and BJT

MOSFET

BJT

Often simplifications of the small signal model are adequate for a given application
These simplifications will be discussed next

Small Signal Model Simplifications

Small Signal Model Simplifications

Small Signal BJT Model Simplifications

Simplification that is often adequate

Gains for MOSFET and BJT Circuits

BJT
MOSFET

- Gains are identical in small-signal parameter domain !
- Gains vary linearly with small signal parameter g_{m}
- Power is often a key resource in the design of an integrated circuit
- In both circuits, power is proportional to $\mathrm{I}_{\mathrm{CQ}}, \mathrm{I}_{\mathrm{DQ}}$ (if V_{SS} is fixed)

How does g_{m} vary with $I_{D Q}$?

$\xrightarrow[\rightarrow]{\vec{\beta}} \quad g_{m}=\sqrt{\frac{2 \mu C_{O X} W}{L}} \sqrt{I_{D Q}}$
Varies with the square root of $I_{D Q}$

$$
g_{m}=\frac{2 I_{D Q}}{V_{G S Q}-V_{T}}=\frac{2 I_{D Q}}{V_{\text {EBQ }}}
$$

Varies linearly with $I_{D Q}$

$$
g_{\mathrm{m}}=\frac{\mu \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GSQ}}-\mathrm{V}_{\mathrm{T}}\right)
$$

Doesn't vary with $I_{D Q}$

How does g_{m} vary with $I_{D Q}$?

All of the above are true - but with qualification
g_{m} is a function of more than one variable ($l_{D Q}$) and how it varies depends upon how the remaining variables are constrained

Amplifier Biasing (precursor)

Not convenient to have multiple dc power supplies $\mathrm{V}_{\text {OUTQ }}$ very sensitive to V_{EE}

Single power supply
Additional resistor and capacitor

Compare the small-signal equivalent circuits of these two structures Compare the small-signal voltage gain of these two structures

Amplifier Biasing (precursor)

V_{CC} and V_{EE} have disappeared!

$$
A_{V} \simeq-g_{m} R_{1}
$$

- Voltage sources $\mathrm{V}_{\text {EE }}$ and V_{CC} used for biasing
- Not convenient to have multiple dc power supplies
- $\mathrm{V}_{\text {OUtQ }}$ very sensitive to V_{EE}
> Biasing is used to obtain the desired operating point of a circuit
> Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Amplifier Biasing (precursor)

Single power supply
Additional resistor and capacitor
Thevenin Equivalent of $\vartheta_{\mathrm{IN}} \& \mathrm{R}_{\mathrm{B}}$ is ϑ_{IN}
> Biasing is used to obtain the desired operating point of a circuit
> Ideally the biasing circuit should not distract significantly from the basic operation of the circuit

Amplifier Biasing (precursor)

Biasing Circuits shown in purple

Not convenient to have multiple dc power supplies
$\mathrm{V}_{\text {OUTQ }}$ very sensitive to V_{EE}

Single power supply
Additional resistor and capacitor

Amplifier Biasing (precursor)

Compare the small-signal equivalent circuits of these two structures

Since Thevenin equivalent circuit in red circle is $\nabla_{\text {IN }}$; bóth circuits have same voltage gain But the load placed on $\mathrm{V}_{\text {IN }}$ is different Method of characterizing the amplifiers is needed to assess impact of difference

Small-Signal Analysis

- Graphical Interpretation
- MOSFET Model Extensions
- Biasing (a precursor)
\longrightarrow Two-Port Amplifier Modeling

Amplifier Characterization (an example)

This example serves as a precursor to amplifier characterization
Determine $\mathbf{V}_{\text {outd }}, \mathbf{A}_{\boldsymbol{V}}, \mathbf{R}_{\text {IN }} \quad$ Assume $\beta=100$

In the following slides we will analyze this circuit

Amplifier Characterization (an example)

(biasing components: $\mathrm{C}, \mathrm{R}_{\mathrm{B}}, \mathrm{V}_{\mathrm{CC}}$ in this case, all disappear in small-signal gain circuit)
Several different biasing circuits can be used

Amplifier Characterization (an example)

Determine ${\underset{V}{\text { outa }}}^{\mathfrak{V}}, \mathcal{A}_{\mathrm{V}}, \mathrm{R}_{\text {IN }}$

Amplifier Characterization (an example)

Determine $\mathrm{V}_{\text {OUTQ }}$

$$
V_{C C}=12 \mathrm{~V}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CQ}}=\beta \mathrm{I}_{\mathrm{BQ}}=100\left(\frac{12 \mathrm{~V}-0.6 \mathrm{~V}}{500 \mathrm{~K}}\right)=2.3 \mathrm{~mA} \\
& \mathrm{~V}_{\text {outQ }}=12 \mathrm{~V}-\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{1}=12 \mathrm{~V}-2.3 \mathrm{~mA} \cdot 2 \mathrm{~K}=7.4 \mathrm{~V}
\end{aligned}
$$

Amplifier Characterization (an example)

Determine the SS voltage gain $\left(A_{v}\right)$

ss equivalent circuit

ss equivalent circuit

$$
\begin{gathered}
v_{\text {oUT }}=-\mathrm{g}_{\mathrm{m}} v_{\mathrm{BE}} \mathrm{R}_{1} \\
\boldsymbol{v}_{I N}=\boldsymbol{v}_{\mathrm{BE}} \\
\mathrm{~A}_{\mathrm{V}}=-\mathrm{R}_{1} \mathrm{~g}_{\mathrm{m}} \\
\mathrm{~A}_{\mathrm{V}} \cong-\frac{\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{1}}{\mathrm{~V}_{\mathrm{t}}} \\
\mathrm{~A}_{\mathrm{V}} \cong-\frac{2.3 \mathrm{~mA} \cdot 2 \mathrm{~K}}{26 \mathrm{mV}} \cong-177
\end{gathered}
$$

This basic amplifier structure is widely used and repeated analysis serves no useful purpose

Amplifier Characterization (an example)

Determine $\mathrm{V}_{\text {outa }}, \mathbf{A}_{\mathrm{V}}, \mathbf{R}_{\text {IN }}$

- Here $\mathrm{R}_{\mathbb{N}}$ is defined to be the impedance facing $\mathrm{V}_{\mathbb{N}}$
- Here any load is assumed to be absorbed into the one-port
- Later will consider how load is connected in defining R_{IN}

Amplifier Characterization (an example)

Determine $\mathrm{R}_{\mathbb{I}}$

ss equivalent circuit

$$
\begin{aligned}
& \quad \mathrm{R}_{\mathrm{in}}=R_{B} / / r_{\pi} \\
& \text { Usually } \mathrm{R}_{\mathrm{B}} \gg \mathrm{r}_{\pi}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{in}}=R_{B} / / r_{\pi} \cong r_{\pi} \\
\mathrm{R}_{\mathrm{in}} \cong r_{\pi}=\left(\frac{\mathrm{I}_{\mathrm{cQ}}}{\beta \mathrm{~V}_{\mathrm{t}}}\right)^{-1} \\
\mathrm{R}_{\mathrm{in}} \cong\left(\frac{2.3 \mathrm{~mA}}{100 \cdot 25 \mathrm{mV}}\right)^{-1}=1087 \Omega
\end{gathered}
$$

Amplifier Characterization (an example)

Determine $v_{\text {OUT }}$ and $\mathrm{V}_{\text {OUT }}(\mathrm{t})$ if $v_{\text {IN }}=.002 \sin (400 \mathrm{t})$

$$
\begin{aligned}
& \psi_{\text {OUT }}=A_{\mathrm{V}} \boldsymbol{v}_{\text {IN }} \\
& \psi_{\text {OUT }}=-177 \bullet .002 \sin (400 \mathrm{t})=-0.354 \sin (400 \mathrm{t}) \\
& \mathrm{V}_{\text {OUT }}(\mathrm{t}) \cong \mathrm{V}_{\text {OUTQ }}+\mathrm{A}_{\mathrm{v}} v_{\mathrm{N}} \\
& \mathrm{~V}_{\text {OUT }} \cong 7.4 V-0.35 \bullet \sin (400 t)
\end{aligned}
$$

This example identified several useful characteristics of amplifiers but a more formal method of characterization is needed!

Amplifier Characterization

- Two-Port Models
- Amplifier Parameters

Will assume amplifiers have two ports, one termed an input port and the other termed an output port

Two-Port and Three-Port Networks

- Each port characterized by a pair of nodes (terminals)
- Can consider any number of ports
- Can be linear or nonlinear but most interest here will be in linear n-ports
- Often one node is common for all ports
- Ports are externally excited, terminated, or interconnected to form useful circuits
- Often useful for decomposing portions of a larger circuit into subcircuits to provide additional insight into operation

Two-Port Representation of Amplifiers

- Two-port model representation of amplifiers useful for insight into operation and analysis
- Internal circuit structure of the two-port can be quite complicated but equivalent two-port model (when circuit is linear) is quite simple

Two-port representation of amplifiers

Amplifiers can be modeled as a linear two-port for small-signal operation

In terms of y-parameters
Other parameter sets could be used

- Amplifier often unilateral (signal propagates in only one direction: wlog $y_{1_{2}}=0$)
- One terminal is often common

Two-port representation of amplifiers

 Unilateral amplifiers:

- Thevenin equivalent output port often more standard
- $R_{I N}, A_{V}$, and $R_{\text {OUT }}$ often used to characterize the two-port of amplifiers

Unilateral amplifier in terms of "amplifier" parameters

$$
R_{I N}=\frac{1}{y_{11}} \quad A_{V}=-\frac{y_{21}}{y_{22}} \quad R_{\text {out }}=\frac{1}{y_{22}}
$$

Amplifier input impedance, output impedance and gain are usually of interest

Why?
Example 1: Assume amplifier is unilateral

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Amplifier input impedance, output impedance and gain are usually of interest Why?

Example 2: Assume amplifiers are unilateral

$$
\begin{aligned}
& V_{\text {OUT }}=\left(\frac{R_{L}}{R_{L}+R_{\text {OUT3 }}}\right) A_{V 3}\left(\frac{R_{\text {IN3 }}}{R_{\text {OUT } 2}+R_{\text {IN } 3}}\right) A_{V 2}\left(\frac{R_{\text {IN } 2}}{R_{\text {OUT } 1}+R_{\text {IN } 2}}\right) A_{V 1}\left(\frac{R_{\text {IN } 1}}{R_{S}+R_{\text {IN }}}\right) V_{I N} \\
& A_{\text {VAMP }}=\frac{V_{\text {OUT }}}{V_{I N}}=\left(\frac{R_{L}}{R_{L}+R_{\text {OUT } 3}}\right) A_{V \text { V3 }}\left(\frac{R_{I N 3}}{R_{\text {OUT } 2}+R_{I N 3}}\right) A_{V 2}\left(\frac{R_{\text {IN } 2}}{R_{\text {OUT } 1}+R_{I N 2}}\right) A_{V 1}\left(\frac{R_{I N 1}}{R_{S}+R_{\text {IN } 1}}\right)
\end{aligned}
$$

- Can get gain without reconsidering details about components internal to the Amplifier !!!
- Analysis more involved when not unilateral

Stay Safe and Stay Healthy !

End of Lecture 27

